100 research outputs found

    Cerebral perfusion pressure and brain ischaemia: can one size fit all?

    Get PDF
    Current recommendations regarding the management of patients after traumatic brain injury include reduction in brain tissue pressure (i.e. intracranial pressure) and maintenance of an adequate arterial pressure; these measures combined should result in cerebral perfusion pressure sufficient to achieve adequate oxygen delivery. After almost 20 years of observational studies comparing cerebral perfusion pressure and indices of cerebral oxygenation, it is apparent that there is no single value for cerebral perfusion pressure that, if achieved, will provide adequate cerebral oxygen delivery in all patients. Traumatic brain injury remains a common problem, and this should encourage researchers and clinicians to design better and adequately powered trials of monitors and associated interventions

    Bench-to-bedside review: Hypothermia in traumatic brain injury

    Get PDF
    Traumatic brain injury remains a major cause of death and severe disability throughout the world. Traumatic brain injury leads to 1,000,000 hospital admissions per annum throughout the European Union. It causes the majority of the 50,000 deaths from road traffic accidents and leaves 10,000 patients severely handicapped: three quarters of these victims are young people. Therapeutic hypothermia has been shown to improve outcome after cardiac arrest, and consequently the European Resuscitation Council and American Heart Association guidelines recommend the use of hypothermia in these patients. Hypothermia is also thought to improve neurological outcome after neonatal birth asphyxia. Cardiac arrest and neonatal asphyxia patient populations present to health care services rapidly and without posing a diagnostic dilemma; therefore, therapeutic systemic hypothermia may be implemented relatively quickly. As a result, hypothermia in these two populations is similar to the laboratory models wherein systemic therapeutic hypothermia is commenced very soon after the injury and has shown so much promise. The need for resuscitation and computerised tomography imaging to confirm the diagnosis in patients with traumatic brain injury is a factor that delays intervention with temperature reduction strategies. Treatments in traumatic brain injury have traditionally focussed on restoring and maintaining adequate brain perfusion, surgically evacuating large haematomas where necessary, and preventing or promptly treating oedema. Brain swelling can be monitored by measuring intracranial pressure (ICP), and in most centres ICP is used to guide treatments and to monitor their success. There is an absence of evidence for the five commonly used treatments for raised ICP and all are potential 'double-edged swords' with significant disadvantages. The use of hypothermia in patients with traumatic brain injury may have beneficial effects in both ICP reduction and possible neuro-protection. This review will focus on the bench-to-bedside evidence that has supported the development of the Eurotherm3235Trial protocol

    A systematic review of therapeutic hypothermia for adult patients following traumatic brain injury

    Get PDF
    INTRODUCTION: Research into therapeutic hypothermia following traumatic brain injury has been characterised by small trials of poor methodological quality, producing variable results. The Cochrane review, published in 2009, now requires updating. The aim of this systematic review is to assess the effectiveness of the application of therapeutic hypothermia to reduce death and disability when administered to adult patients who have been admitted to hospital following traumatic brain injury. METHODS: Two authors extracted data from each trial. Unless stated in the trial report, relative risks and 95% confidence intervals (CIs) were calculated for each trial. We considered P < 0 · 05 to be statistically significant. We combined data from all trials to estimate the pooled risk ratio (RR) with 95% confidence intervals for death, unfavourable outcome, and pneumonia. All statistical analyses were performed using RevMan 5.1 (Cochrane IMS, Oxford, UK) and Stata (Intercooled Version 12.0, StataCorp LP). Pooled RRs were calculated using the Mantel-Haenszel estimator. The random effects model of DerSimonian and Laird was used to estimate variances for the Mantel-Haenszel and inverse variance estimators. RESULTS: Twenty studies are included in the review, while 18 provided mortality data. When the results of 18 trials that evaluated mortality as one of the outcomes were statistically aggregated, therapeutic hypothermia was associated with a significant reduction in mortality and a significant reduction in poor outcome. There was a lack of statistical evidence for an association between use of therapeutic hypothermia and increased onset of new pneumonia. CONCLUSIONS: In contrast to previous reviews, this systematic review found some evidence to suggest that therapeutic hypothermia may be of benefit in the treatment of traumatic brain injury. The majority of trials were of low quality, with unclear allocation concealment. Low quality trials may overestimate the effectiveness of hypothermia treatment versus standard care. There remains a need for more, high quality, randomised control trials of therapeutic hypothermia after traumatic brain injury. PROSPERO Systematic Review Registration Number 2012: CRD42012002449

    Therapeutic hypothermia to reduce intracranial pressure after traumatic brain injury: the Eurotherm3235 RCT

    Get PDF
    Background: Traumatic brain injury (TBI) is a major cause of disability and death in young adults worldwide. It results in around 1 million hospital admissions annually in the European Union (EU), causes a majority of the 50,000 deaths from road traffic accidents and leaves a further ≈10,000 people severely disabled. Objective: The Eurotherm3235 Trial was a pragmatic trial examining the effectiveness of hypothermia (32–35 °C) to reduce raised intracranial pressure (ICP) following severe TBI and reduce morbidity and mortality 6 months after TBI. Design: An international, multicentre, randomised controlled trial. Setting: Specialist neurological critical care units. Participants: We included adult participants following TBI. Eligible patients had ICP monitoring in place with an ICP of > 20 mmHg despite first-line treatments. Participants were randomised to receive standard care with the addition of hypothermia (32–35 °C) or standard care alone. Online randomisation and the use of an electronic case report form (CRF) ensured concealment of random treatment allocation. It was not possible to blind local investigators to allocation as it was obvious which participants were receiving hypothermia. We collected information on how well the participant had recovered 6 months after injury. This information was provided either by the participant themself (if they were able) and/or a person close to them by completing the Glasgow Outcome Scale – Extended (GOSE) questionnaire. Telephone follow-up was carried out by a blinded independent clinician. Interventions: The primary intervention to reduce ICP in the hypothermia group after randomisation was induction of hypothermia. Core temperature was initially reduced to 35 °C and decreased incrementally to a lower limit of 32 °C if necessary to maintain ICP at  20 mmHg, titrated therapeutic hypothermia successfully reduced ICP but led to a higher mortality rate and worse functional outcome. Limitations: Inability to blind treatment allocation as it was obvious which participants were randomised to the hypothermia group; there was biased recording of SAEs in the hypothermia group. We now believe that more adequately powered clinical trials of common therapies used to reduce ICP, such as hypertonic therapy, barbiturates and hyperventilation, are required to assess their potential benefits and risks to patients. Trial registration: Current Controlled Trials ISRCTN34555414. Funding: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 22, No. 45. See the NIHR Journals Library website for further project information. The European Society of Intensive Care Medicine supported the pilot phase of this trial

    European society of intensive care medicine study of therapeutic hypothermia (32-35 °C) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial).

    Get PDF
    BACKGROUND: Traumatic brain injury is a major cause of death and severe disability worldwide with 1,000,000 hospital admissions per annum throughout the European Union.Therapeutic hypothermia to reduce intracranial hypertension may improve patient outcome but key issues are length of hypothermia treatment and speed of re-warming. A recent meta-analysis showed improved outcome when hypothermia was continued for between 48 hours and 5 days and patients were re-warmed slowly (1 °C/4 hours). Previous experience with cooling also appears to be important if complications, which may outweigh the benefits of hypothermia, are to be avoided. METHODS/DESIGN: This is a pragmatic, multi-centre randomised controlled trial examining the effects of hypothermia 32-35 °C, titrated to reduce intracranial pressure 20 mmHg in accordance with the Brain Trauma Foundation Guidelines, 2007. DISCUSSION: The Eurotherm3235Trial is the most important clinical trial in critical care ever conceived by European intensive care medicine, because it was launched and funded by the European Society of Intensive Care Medicine and will be the largest non-commercial randomised controlled trial due to the substantial number of centres required to deliver the target number of patients. It represents a new and fundamental step for intensive care medicine in Europe. Recruitment will continue until January 2013 and interested clinicians from intensive care units worldwide can still join this important collaboration by contacting the Trial Coordinating Team via the trial website http://www.eurotherm3235trial.eu. TRIAL REGISTRATION: Current Controlled Trials ISRCTN34555414

    Randomised trial of glutamine and selenium supplemented parenteral nutrition for critically ill patients

    Get PDF
    Background: Mortality rates in the Intensive Care Unit and subsequent hospital mortality rates in the UK remain high. Infections in Intensive Care are associated with a 2–3 times increased risk of death. It is thought that under conditions of severe metabolic stress glutamine becomes "conditionally essential". Selenium is an essential trace element that has antioxidant and anti-inflammatory properties. Approximately 23% of patients in Intensive Care require parenteral nutrition and glutamine and selenium are either absent or present in low amounts. Both glutamine and selenium have the potential to influence the immune system through independent biochemical pathways. Systematic reviews suggest that supplementing parenteral nutrition in critical illness with glutamine or selenium may reduce infections and mortality. Pilot data has shown that more than 50% of participants developed infections, typically resistant organisms. We are powered to show definitively whether supplementation of PN with either glutamine or selenium is effective at reducing new infections in critically ill patients. Methods/design: 2 × 2 factorial, pragmatic, multicentre, double-blind, randomised controlled trial. The trial has an enrolment target of 500 patients. Inclusion criteria include: expected to be in critical care for at least 48 hours, aged 16 years or over, patients who require parenteral nutrition and are expected to have at least half their daily nutritional requirements given by that route. Allocation is to one of four iso-caloric, iso-nitrogenous groups: glutamine, selenium, both glutamine & selenium or no additional glutamine or selenium. Trial supplementation is given for up to seven days on the Intensive Care Unit and subsequent wards if practicable. The primary outcomes are episodes of infection in the 14 days after starting trial nutrition and mortality. Secondary outcomes include antibiotic usage, length of hospital stay, quality of life and cost-effectiveness. Discussion: To date more than 285 patients have been recruited to the trial from 10 sites in Scotland. Recruitment is due to finish in August 2008 with a further six months follow up. We expect to report the results of the trial in summer 2009. Trial registration: This trial is registered with the International Standard Randomised Controlled Trial Number system. ISRCTN87144826Not peer reviewedPublisher PD

    Diagnostic importance of pulmonary interleukin-1beta and interleukin-8 in ventilator-associated pneumonia.

    Get PDF
    BACKGROUND: Ventilator-associated pneumonia (VAP) is the most commonly fatal nosocomial infection. Clinical diagnosis of VAP remains notoriously inaccurate. The hypothesis was tested that significantly augmented inflammatory markers distinguish VAP from conditions closely mimicking VAP. METHODS: A prospective, observational cohort study was carried out in two university hospital intensive care units recruiting 73 patients with clinically suspected VAP, and a semi-urban primary care practice recruiting a reference group of 21 age- and sex-matched volunteers. Growth of pathogens at >10(4) colony-forming units (cfu)/ml of bronchoalveolar lavage fluid (BALF) distinguished VAP from "non-VAP". Inflammatory mediators were quantified in BALF and serum. Mediators showing significant differences between patients with and without VAP were analysed for diagnostic utility by receiver operator characteristic (ROC) curves. RESULTS: Seventy-two patients had recoverable lavage-24% had VAP. BALF interleukin-1beta (IL-1beta), IL-8, granulocyte colony-stimulating factor and macrophage inflammatory protein-1alpha were significantly higher in the VAP group (all p<0.005). Using a cut-off of 10 pg/ml, BALF IL-1beta generated negative likelihood ratios for VAP of 0.09. In patients with BALF IL-1beta <10 pg/ml the post-test probability of VAP was 2.8%. Using a cut-off value for IL-8 of 2 ng/ml, the positive likelihood ratio was 5.03. There was no difference in cytokine levels between patients with sterile BALF and those with growth of <10(4) cfu/ml. CONCLUSIONS: BALF IL-1beta and IL-8 are amongst the strongest markers yet identified for accurately demarcating VAP within the larger population of patients with suspected VAP. These findings have potential implications for reduction in unnecessary antibiotic use but require further validation in larger populations

    The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling.

    Get PDF
    BACKGROUND: The existing estimate of the global burden of latent TB infection (LTBI) as "one-third" of the world population is nearly 20 y old. Given the importance of controlling LTBI as part of the End TB Strategy for eliminating TB by 2050, changes in demography and scientific understanding, and progress in TB control, it is important to re-assess the global burden of LTBI. METHODS AND FINDINGS: We constructed trends in annual risk in infection (ARI) for countries between 1934 and 2014 using a combination of direct estimates of ARI from LTBI surveys (131 surveys from 1950 to 2011) and indirect estimates of ARI calculated from World Health Organisation (WHO) estimates of smear positive TB prevalence from 1990 to 2014. Gaussian process regression was used to generate ARIs for country-years without data and to represent uncertainty. Estimated ARI time-series were applied to the demography in each country to calculate the number and proportions of individuals infected, recently infected (infected within 2 y), and recently infected with isoniazid (INH)-resistant strains. Resulting estimates were aggregated by WHO region. We estimated the contribution of existing infections to TB incidence in 2035 and 2050. In 2014, the global burden of LTBI was 23.0% (95% uncertainty interval [UI]: 20.4%-26.4%), amounting to approximately 1.7 billion people. WHO South-East Asia, Western-Pacific, and Africa regions had the highest prevalence and accounted for around 80% of those with LTBI. Prevalence of recent infection was 0.8% (95% UI: 0.7%-0.9%) of the global population, amounting to 55.5 (95% UI: 48.2-63.8) million individuals currently at high risk of TB disease, of which 10.9% (95% UI:10.2%-11.8%) was isoniazid-resistant. Current LTBI alone, assuming no additional infections from 2015 onwards, would be expected to generate TB incidences in the region of 16.5 per 100,000 per year in 2035 and 8.3 per 100,000 per year in 2050. Limitations included the quantity and methodological heterogeneity of direct ARI data, and limited evidence to inform on potential clearance of LTBI. CONCLUSIONS: We estimate that approximately 1.7 billion individuals were latently infected with Mycobacterium tuberculosis (M.tb) globally in 2014, just under a quarter of the global population. Investment in new tools to improve diagnosis and treatment of those with LTBI at risk of progressing to disease is urgently needed to address this latent reservoir if the 2050 target of eliminating TB is to be reached
    corecore